Automobile

An automobile, autocar, motor car or car is a wheeled motor vehicle used for transporting passengers, which also carries its own engine or motor. Most definitions of the term specify that automobiles are designed to run primarily on roads, to have seating for one to eight people, to typically have four wheels, and to be constructed principally for the transport of people rather than goods.[3]

The term motorcar has also been used in the context of electrified rail systems to denote a car which functions as a small locomotive but also provides space for passengers and baggage. These locomotive cars were often used on suburban routes by both interurban and intercity railroad systems.[4]

It was estimated in 2010 that the number of automobiles had risen to over 1 billion vehicles, with 500 million reached in 1986.[6]

Etymology

The word automobile comes, via the French automobile from the [8]

History

The first working steam-powered vehicle was designed – and possibly built – by Ferdinand Verbiest, a Flemish member of a Jesuit mission in China around 1672. It was a 65 cm-long scale-model toy for the Chinese Emperor, that was unable to carry a driver or a passenger.[9][10][11] It is not known if Verbiest’s model was ever built.[10]

Richard Trevithick built and demonstrated his Puffing Devil road locomotive, believed by many to be the first demonstration of a steam-powered road vehicle. It was unable to maintain sufficient steam pressure for long periods, and was of little practical use.

In 1807 [15]

In November 1881, French inventor Gustave Trouvé demonstrated a working three-wheeled automobile powered by electricity at the International Exposition of Electricity, Paris.[16]

Although several other German engineers (including Gottlieb Daimler, Wilhelm Maybach, and Siegfried Marcus) were working on the problem at about the same time, Karl Benz generally is acknowledged as the inventor of the modern automobile.[15]

In 1879, Benz was granted a patent for his first engine, which had been designed in 1878. Many of his other inventions made the use of the internal combustion engine feasible for powering a vehicle. His first road trip by car, to prove the road-worthiness of her husband’s invention.

In 1896, Benz designed and patented the first internal-combustion joint-stock company.

The first motor car in central Europe and one of the first factory-made cars in the world, was produced by Präsident automobil.

Daimler and Maybach founded Cannstatt in 1890, and sold their first automobile in 1892 under the brand name, Daimler. It was a horse-drawn stagecoach built by another manufacturer, that they retrofitted with an engine of their design. By 1895 about 30 vehicles had been built by Daimler and Maybach, either at the Daimler works or in the Hotel Hermann, where they set up shop after disputes with their backers. Benz, Maybach and the Daimler team seem to have been unaware of each other’s early work. They never worked together; by the time of the merger of the two companies, Daimler and Maybach were no longer part of DMG.

Daimler died in 1900 and later that year, Maybach designed an engine named Daimler-Mercedes, that was placed in a specially ordered model built to specifications set by Emil Jellinek. This was a production of a small number of vehicles for Jellinek to race and market in his country. Two years later, in 1902, a new model DMG automobile was produced and the model was named Mercedes after the Maybach engine which generated 35 hp. Maybach quit DMG shortly thereafter and opened a business of his own. Rights to the Daimler brand name were sold to other manufacturers.

Karl Benz proposed co-operation between DMG and Benz & Cie. when economic conditions began to deteriorate in Germany following the First World War, but the directors of DMG refused to consider it initially. Negotiations between the two companies resumed several years later when these conditions worsened and, in 1924 they signed an Agreement of Mutual Interest, valid until the year 2000. Both enterprises standardized design, production, purchasing, and sales and they advertised or marketed their automobile models jointly, although keeping their respective brands. On 28 June 1926, Benz & Cie. and DMG finally merged as the Daimler-Benz company, baptizing all of its automobiles Mercedes Benz, as a brand honoring the most important model of the DMG automobiles, the Maybach design later referred to as the 1902 Mercedes-35 hp, along with the Benz name. Karl Benz remained a member of the board of directors of Daimler-Benz until his death in 1929, and at times, his two sons participated in the management of the company as well.

In 1890, Armand Peugeot of France began producing vehicles with Daimler engines, and so laid the foundation of the automobile industry in France.

The first design for an American automobile with a gasoline internal combustion engine was made in 1877 by Henry Ford and others, and overturned in 1911.

In 1893, the first running, gasoline-powered [17]

In Britain, there had been several attempts to build steam cars with varying degrees of success, with [20]

In 1892, German engineer Rudolf Diesel was granted a patent for a “New Rational Combustion Engine”. In 1897, he built the first Diesel Engine.[15] Steam-, electric-, and gasoline-powered vehicles competed for decades, with gasoline internal combustion engines achieving dominance in the 1910s.

Although various Wankel engine has had more than very limited success.

Mass production

The large-scale, production-line manufacturing of affordable automobiles was debuted by Ransom Olds in 1902 at his Oldsmobile factory located in Lansing, Michigan and based upon the assembly line techniques pioneered by Marc Isambard Brunel at the Portsmouth Block Mills, England in 1802. The assembly line style of mass production and interchangeable parts had been pioneered in the U.S. by Thomas Blanchard in 1821, at the Springfield Armory in Springfield, Massachusetts.[21] This concept was greatly expanded by Henry Ford, beginning in 1914.

As a result, Ford’s cars came off the line in fifteen minute intervals, much faster than previous methods, increasing productivity eightfold (requiring 12.5-man-hours before, 1-hour 33 minutes after), while using less manpower.[22]

Ford’s complex safety procedures—especially assigning each worker to a specific location instead of allowing them to roam about—dramatically reduced the rate of injury. The combination of high wages and high efficiency is called “Fordism,” and was copied by most major industries. The efficiency gains from the assembly line also coincided with the economic rise of the United States. The assembly line forced workers to work at a certain pace with very repetitive motions which led to more output per worker while other countries were using less productive methods.

In the automotive industry, its success was dominating, and quickly spread worldwide seeing the founding of Ford France and Ford Britain in 1911, Ford Denmark 1923, Ford Germany 1925; in 1921, Citroen was the first native European manufacturer to adopt the production method. Soon, companies had to have assembly lines, or risk going broke; by 1930, 250 companies which did not, had disappeared.[22]

Development of automotive technology was rapid, due in part to the hundreds of small manufacturers competing to gain the world’s attention. Key developments included electric suspension, and four-wheel brakes.

Since the 1920s, nearly all cars have been mass-produced to meet market needs, so marketing plans often have heavily influenced automobile design. It was Alfred P. Sloan who established the idea of different makes of cars produced by one company, so buyers could “move up” as their fortunes improved.

Reflecting the rapid pace of change, makes shared parts with one another so larger production volume resulted in lower costs for each price range. For example, in the 1930s, LaSalles, sold by Cadillac, used cheaper mechanical parts made by Oldsmobile; in the 1950s, Chevrolet shared hood, doors, roof, and windows with Pontiac; by the 1990s, corporate powertrains and shared platforms (with interchangeable brakes, suspension, and other parts) were common. Even so, only major makers could afford high costs, and even companies with decades of production, such as Apperson, Cole, Dorris, Haynes, or Premier, could not manage: of some two hundred American car makers in existence in 1920, only 43 survived in 1930, and with the Great Depression, by 1940, only 17 of those were left.[22]

In Europe much the same would happen. [22]

Weight

The weight of a car influences fuel consumption and performance, with more weight resulting in increased fuel consumption and decreased performance. According to a research conducted by [23]

In some competitions such as the [26]

Seating and body style

Most cars are designed to carry multiple occupants, often with four or five seats. Larger cars can often carry six, seven or more occupants depending in the internal arrange of seats. Sports cars are often designed with only two seats, and very occasionally three seats. The differing needs for passenger capacity and their luggage has resulted in a large variety of body styles to suit personal requirements such as the Minivan.

Fuel and propulsion technologies

Most automobiles in use today are propelled by an internal combustion engine, fueled by deflagration of gasoline (also known as petrol) or diesel. Both fuels are known to cause air pollution and are also blamed for contributing to climate change and global warming.[27] Rapidly increasing oil prices, concerns about oil dependence, tightening environmental laws and restrictions on greenhouse gas emissions are propelling work on alternative power systems for automobiles. Efforts to improve or replace existing technologies include the development of hybrid vehicles, plug-in electric vehicles and hydrogen vehicles. Vehicles using alternative fuels such as ethanol flexible-fuel vehicles and natural gas vehicles are also gaining popularity in some countries.

Safety

While road traffic injuries represent the leading cause in worldwide injury-related deaths,[28] their popularity undermines this statistic.

[32]

Costs and benefits

The costs of automobile usage, which may include the cost of: acquiring the vehicle, repairs and maintenance, fuel, [11]

Similarly the costs to society of encompassing automobile use, which may include those of: maintaining roads, land use, pollution, public health, health care, and of disposing of the vehicle at the end of its life, can be balanced against the value of the benefits to society that automobile use generates. The societal benefits may include: economy benefits, such as job and wealth creation, of automobile production and maintenance, transportation provision, society wellbeing derived from leisure and travel opportunities, and revenue generation from the tax opportunities. The ability for humans to move flexibly from place to place has far reaching implications for the nature of societies.[34]

Criticism

Transportation is a major contributor to air pollution in most industrialised nations. According to the American Surface Transportation Policy Project nearly half of all Americans are breathing unhealthy air. Their study showed air quality in dozens of metropolitan areas has worsened over the last decade.[36]

Animals and plants are often negatively impacted by automobiles via Roadkill.

Growth in the popularity of vehicles and commuting has led to traffic congestion. Brussels is considered Europe’s most congested city.[38]

Oil consumption in the twentieth and twenty-first centuries has been abundantly pushed by automobile growth; the 1985–2003 oil glut even fuelled the sales of low economy vehicles in OECD countries. The BRIC countries might also kick in, as China briefly was the first automobile market in December 2009.[41]

Residents of low-density, residential-only sprawling communities are also more likely to die in [42]

Future car technologies

Automobile propulsion technology under development include gasoline/electric and plug-in hybrids, battery electric vehicles, hydrogen cars, biofuels, and various alternative fuels. Research into future alternative forms of power include the development of fuel cells, Homogeneous Charge Compression Ignition (HCCI), Stirling engines,[43] and even using the stored energy of compressed air or liquid nitrogen.

New materials which may replace steel car bodies include carbon nanotubes.

carpool schemes.

Communication is also evolving due to connected car systems.

Driverless cars

Fully autonomous vehicles, also known as robotic cars, or driverless cars, already exist in prototype, and are expected to be commercially available around 2020. According to urban designer and futurist [46]

Open source development

There have been several projects aiming to develop a car on the principles of [49]

Alternatives to the automobile

Established alternatives for some aspects of automobile use include [52]

Industry

The automotive industry designs, develops, manufactures, markets, and sells the world’s motor vehicles. In 2008, more than 70 million motor vehicles, including cars and commercial vehicles were produced worldwide.[53]

In 2007, a total of 71.9 million new automobiles were sold worldwide: 22.9 million in Europe, 21.4 million in the Asia-Pacific Region, 19.4 million in the USA and Canada, 4.4 million in Latin America, 2.4 million in the Middle East and 1.4 million in Africa.[54] The markets in North America and Japan were stagnant, while those in South America and other parts of Asia grew strongly. Of the major markets, China, Russia, Brazil and India saw the most rapid growth.

About 250 million vehicles are in use in the United States. Around the world, there were about 806 million cars and light trucks on the road in 2007; they burn over 260 billion US gallons (980,000,000 m3) of gasoline and diesel fuel yearly. The numbers are increasing rapidly, especially in China and India.sustainable transport movement focuses on solutions to these problems.

In 2008, with rapidly rising oil prices, industries such as the automotive industry, are experiencing a combination of pricing pressures from raw material costs and changes in consumer buying habits. The industry is also facing increasing external competition from the public transport sector, as consumers re-evaluate their private vehicle usage.[60]

This article uses material from the Wikipedia article Automobile, which is released under the Creative Commons Attribution-Share-Alike License 3.0.

Follow

Get every new post delivered to your Inbox

Join other followers